

SpringBoard: Editor for Spring

SpringBoard is an in-game editor for the SpringRTS [https://springrts.com/] engine, and it can be used to develop maps and scenarios.

Installing

The simplest way to download SpringBoard is by using one of the provided installers:

	Windows build [https://github.com/Spring-SpringBoard/SpringBoard-Core/releases/download/v1.1335.0/SpringBoard-1.1335.0.exe]

	Linux build [https://github.com/Spring-SpringBoard/SpringBoard-Core/releases/download/v1.1335.0/SpringBoard-1.1335.0.AppImage]

For details refer to Installing.

Game-specific modules

This is the core module, you may still want to get additional game-specific modules if you’re making a scenario.

Some examples:

	https://github.com/Spring-SpringBoard/SpringBoard-BA

	https://github.com/Spring-SpringBoard/SpringBoard-ZK

	https://github.com/Spring-SpringBoard/SpringBoard-EVO

	https://github.com/Spring-SpringBoard/SpringBoard-S44

Assets

A set of core assets are available. You can download them either via the launcher’s Asset Download option (recommended), or manually via a direct link [https://content.spring-launcher.com/core_v1.zip]. In case of a manual download, you need to extract them to springboard/assets/core/.

Help

Please post any questions, bugs and feature requests as Github issues [https://github.com/Spring-SpringBoard/SpringBoard-Core/issues/new].

For realtime troubleshooting feel free to join us on Discord [https://discordapp.com/invite/c8hmDnr] in the #springboard channel.

Contents

	Installing
	Using packaged builds

	Manual setup

	Hardware requirements

	Software requirements

	Starting out
	Layout

	SpringBoard directory structure

	Making Scenarios

	Meta programming
	Events

	Actions

	Functions

	Data types

	Higher-order functions (Advanced)

	Example

	Map Features
	Importing

	Exporting as Spring archive (recommended)

	Export manually

	Assets

	Extensions
	Example

	Extensions used in games

	Game-specific modules
	Configuration

	Editor mode handling

	Examples

	Video tutorials

	Hot keys

	Feature comparison
	Spring tools

	Other tools

	API
	View

	State

	Command

	Model

Installing

Using packaged builds

The simplest way to download SpringBoard is by using one of the provided installers. They will automatically download all of the needed resources (engine, editor archives, maps) and setup files, and launch SpringBoard. They will also check for updates on launch and keep the editor updated.

Packages:

	Windows build [https://github.com/Spring-SpringBoard/SpringBoard-Core/releases/download/v1.1335.0/SpringBoard-1.1335.0.exe]

	Linux build [https://github.com/Spring-SpringBoard/SpringBoard-Core/releases/download/v1.1335.0/SpringBoard-1.1335.0.AppImage]

Once you have downloaded one of the above files, simply run them and install as necessary. After installation, it will download the necessary files and launch SpringBoard itself.

Note

Linux users need to make the downloaded .AppImage file executable, by doing chmod +x SpringBoard.AppImage

 Starting out

Starting out

This section introduces the layout of SpringBoard. First make sure you have properly installed SpringBoard. If you are using officially distributed packages, simply run the executable to start SpringBoard. In case you’re using a game-specific version of SpringBoard, refer to its manual on how to run it.

Note

SpringBoard might show a black screen on the first run until it loads. This is expected behavior, during which the program is caching files, and the program isn’t hanging.

 SpringBoard directory structure

SpringBoard directory structure

SpringBoard directory (springboard) is mentioned throughout this documentation, and is located in the Spring data directory.

	The springboard directory contains user projects, assets and extensions:

	
	Projects are maps and scenarios you are working on.

	Assets are resources used during the project creation process.

	Extensions are plugins that enhance the SpringBoard editor.

See also:

	Assets

	Extensions

 Making Scenarios

Making Scenarios

Scenario programming consists of writing triggers - components that consist of events, conditions and actions.
Each trigger can have multiple events - any of which can invoke it. Once the trigger has been invoked, every condition will be checked, and only if all of them are true, all actions will be executed.

We are going to create an example trigger that demonstrates basic SpringBoard GUI programming elements, based on the Gravitas game.

To begin, we are first going to add a couple of Projector units to the map, using the Objects/Units/Add tool.

[image: _images/1.jpg]
Add three units like below.

[image: _images/2.jpg]
Then we’re going to add an Area on the map, using the Logic/Area/Add tool.

[image: _images/3.jpg]
Add an area slightly below of units as demonstrated.

[image: _images/4.jpg]
Now we’re going to actually start GUI programming, by creating a new trigger trigger.

[image: _images/5.jpg]
Pressing the Add button should open a new trigger window, which we can rename.

[image: _images/6.jpg]
We are then going to add a new event: Unit enters area. This event provides two parameters: unit and area, which denote the objects that caused the event.

[image: _images/7.jpg]
We are then going to confirm if the triggered area is our newly created area, by creating a Compare area condition.

[image: _images/8.jpg]
Lastly, we are going to create a Destroy unit action which will destroy the unit that has entered the area.

[image: _images/9.jpg]
The resulting trigger should be similar to the picture below.

[image: _images/10.jpg]
We can now test our trigger. Before starting the game, we should confirm that we have selected Team 1 as our team, otherwise we won’t be able to control the units.

[image: _images/11.jpg]
To start testing, we can now press the Start button. Moving the units into the area will destroy them as expected.

[image: _images/12.jpg]
After we have stopped testing, let’s now add two B.O.B units using the same Objects/Units/Add tool as before.

[image: _images/13.jpg]
Now, let’s say we don’t want B.O.B units to be destroyed when they enter the area. We can add another condition that will check the unit type of the entered unit. To do this, we need to use an expression, that will return the unit type of the entered unit.

[image: _images/14.jpg]
The resulting trigger is displayed below. If we were to test the scenario again, we will see that B.O.B units aren’t being destroyed anymore, which is the desired effect.

[image: _images/15.jpg]
Lastly, let’s only destroy one unit. To do this, we can count the number of units that have been destroyed, and only destroy the unit if we have destroyed less than 1. We are going to create a new variable units_killed which can be used for counting destroyed units.

[image: _images/16.jpg]
We’re going to define it as a number variable type and set it to 0.

[image: _images/17.jpg]
Back in our trigger, we’re going to create a new condition which compares the units_killed variable with 1.

[image: _images/18.jpg]
We also need to increment the variable as a new action. We do this by assigning a new value to the variable, that is the result of adding the old value to 1.

[image: _images/19.jpg]
The resulting trigger is displayed below. Testing it, only the first unit will be destroyed, as desired.

[image: _images/20.jpg]

 Meta programming

Meta programming

Trigger functionalities can be extended with Meta programming. It is possible to customize the following:

	Events

	Functions

	Actions

	Data types

Meta-model file format:

return {
 dataTypes = ..., -- table (or Lua function that returns a table) consisting of action types
 events = ..., -- table (or Lua function that returns a table) consisting of action types
 actions = ..., -- table (or Lua function that returns a table) consisting of action types
 functions = ..., -- table (or Lua function that returns a table) consisting of function types
}

Events

Events invoke triggers, and are caused by various Spring callins.

They have the following fields:

	humanName (mandatory). Human readable name for display in the UI.

	name (mandatory). Unique identifier that is used to produce readable models.

	param (optional). Additional, event data sources that are available to the entire trigger.

	tags (optional). List of human-readable tags used for grouping in the UI.

Example of event programming:

{
 humanName = "Unit enters area",
 name = "UNIT_ENTER_AREA",
 param = { "unit", "area" },
}

Actions

{
 humanName = "Hello world",
 name = "MY_HELLO_WORLD",
 execute = function()
 Spring.Echo("Hello world")
 end,
}

The above code block defines a simple action. The name and humanName properties of the action define the machine (unique) and display name respectively. The execute property defines the function to be executed when the trigger is successfully fired. When used in the editor, this action would print a Hello World on the screen.

It is common for actions to receive input that defines its behavior. One such example would be:

{
 humanName = "Print unit position",
 name = "PRINT_UNIT_POSITION",
 input = "unit",
 execute = function(input)
 local x, y, z = Spring.GetUnitPosition(input.unit)
 Spring.Echo("Unit position: ", x, y, z)
 end,
}

As one might guess, this action would take the specified unit as input and print out its position. The GUI editor will parse the input type and the user (level designer) will be able to specify the unit when creating an instance of this action. This is equivalent to the following Lua code:

function PRINT_UNIT_POSITION(unitID)
 local x, y, z = Spring.GetUnitPosition(unitID)
 Spring.Echo("Unit position: ", x, y, z)
end

Functions

The real power of the meta programming comes with the introduction of function types. Function types produce an output (result of the function), which often depends on the input.

Note

There’s a difference between a Lua function and a function type in the meta model. The function type represents a component in the meta model and is defined with a table.

 Map Features

Map Features

Importing

SpringBoard doesn’t come with any map features besides the engine-default geovent, so if you want to add them you first need to import them into your project.

To import new features you need to perform the following steps:

	Find existing feature sets (e.g. SpringFeatures [https://github.com/Spring-Helper-Projects/spring-features]) or make your own following the official Spring docs [https://springrts.com/wiki/Gamedev:FeatureDefs].

	Copy features into your project and restart.

Below is an example of how to import SpringFeatures into a SpringBoard project.

	Download SF from https://github.com/Spring-Helper-Projects/spring-features/archive/master.zip extract it and open the folder.

	Open an existing project or create a new one. Then, open its folder using the “Open Project” button.

	Copy features, objects3d and unittexture folder to your project. You might want to remove the features you don’t need later.

	Press F8 for console window to show

	Restart

	You should now be able to use features in your project

[image: _images/features1.jpg]
[image: _images/features2.jpg]
[image: _images/features3.jpg]

Exporting as Spring archive (recommended)

Exporting your project using the “Spring archive” export option will include all features and is the recommended way to export a SpringBoard project.

Export manually

Manual export is only recommended if you want to customize the export process (perhaps you want to compile the map yourself using a third-party tool).
In that case you can follow the below tutorial.

s11n export should be used if you want to export game objects (units, features, etc.) and load them in your standalone map.
Install s11n as you would normally:

	Copy the s11n [https://github.com/gajop/s11n] and LCS [https://github.com/gajop/Lua-Class-System] folders to the libs/s11n and libs/LCS folders of the map (create destination directories as necessary).

	Copy s11n_gadget_load.lua [https://github.com/gajop/s11n/blob/master/s11n_gadget_load.lua] from the s11n folder to LuaGaia/Gadgets/ of the map folder.

Then setup s11n to load your exported objects:

	Copy your exported s11n model file to map’s mapconfig folder.

	Copy s11n_load_map_features.lua [https://github.com/gajop/s11n/blob/master/s11n_load_map_features.lua] to map’s LuaGaia/Gadgets/ folder.

	Set the file path [https://github.com/gajop/s11n/blob/master/s11n_load_map_features.lua#L15] to your s11n model file in the newly copied s11n_load_map_features.lua

Including feature defs, compiling the map and setting mapinfo.lua is outside the scope of this guide. Please consult the Spring MapDev [https://springrts.com/wiki/Mapdev:Main] pages for that.

 Assets

Assets

Assets can be added to SpringBoard in order to include new art for editing. They should be added in the springboard/assets folder, and each asset pack should have its own directory structure.

SpringBoard supports the following asset types:

	Brush patterns /brush_patterns. These should be black images with an alpha determining the value.

	Materials /materials. Materials consist of multiple different textures (diffuse, specular and normal), which should be contained in different image files, in the name_$texType.png format, e.g. cement_diffuse.png and cement_specular.png.

	Skyboxes /skyboxes. These should be .dds skybox textures.

	Detail textures /detail. These are the usual Spring detail textures.

A set of core assets are available. You can download them either via the launcher’s Asset Download option (recommended), or manually via a direct link [https://content.spring-launcher.com/core_v1.zip]. In case of a manual download, you need to extract them to springboard/assets/core/.

 Extensions

Extensions

SpringBoard support editor extensions. They should be created in separate folders, in the springboard/exts folder, and they consist of two subfolders:

	ui. This is where you should place all strictly unsynced extensions, like the Editor GUI and States.

	cmd. This folder should contain files that should be shared by both synced and unsynced extensions, like Command and Model.

Example

We present a full example of a SpringBoard extension consisting of ui and cmd modules.
This example is located in the exts/example [https://github.com/Spring-SpringBoard/SpringBoard-Core/tree/master/exts/example] folder of the repository.

First we will define the UI elements, given in the ui/example.lua [https://github.com/Spring-SpringBoard/SpringBoard-Core/tree/master/exts/example/ui/example.lua] file.
At the top of the file, we will include the Editor class and make a new ExampleEditor subclass out of it, with which we will define our custom Editor.

SB.Include(Path.Join(SB.DIRS.SRC, 'view/editor.lua'))

ExampleEditor = Editor:extends{}

We will then register the newly defined class to make it accessible in the SpringBoard interface.

ExampleEditor:Register({
 name = "exampleEditor",
 tab = "Example",
 caption = "Example",
 tooltip = "Example editor",
 image = Path.Join(SB.DIRS.IMG, 'globe.png'),
})

Then in the init method, we will define the fields. We create two NumericFields: example and undoable, and we add them to the Editor.

function ExampleEditor:init()
 self:super("init")

 self:AddField(NumericField({
 name = "example",
 title = "Example:",
 tooltip = "Example value tooltip.",
 width = 140,
 minValue = -10,
 maxValue = 5,
 }))

 -- Note: as we are setting the value in synced only, we won't see the effect of undo in the editor.
 -- Consider using game rules if you want to be able to read in the UI as well.
 self:AddField(NumericField({
 name = "undoable",
 title = "Undoable:",
 tooltip = "This value can be used with undo/redo.",
 width = 140,
 minValue = -3,
 maxValue = 12,
 }))

 local children = {
 ScrollPanel:New {
 x = 0,
 y = 0,
 bottom = 30,
 right = 0,
 borderColor = {0,0,0,0},
 horizontalScrollbar = false,
 children = { self.stackPanel },
 },
 }

 self:Finalize(children)
end

To handle field changes, we will create an OnFieldChange method, and when fields change, we will create and execute appropriate Commands.

function ExampleEditor:OnFieldChange(name, value)
 if name == "example" then
 local cmd = HelloWorldCommand(value)
 SB.commandManager:execute(cmd)
 elseif name == "undoable" then
 local cmd = UndoableExampleCommand(value)
 SB.commandManager:execute(cmd)
 end
end

We also want to group all changes for the UndoableExampleCommand into a single undo/redo command on the command stack, and for that purpose we use the SetMultipleCommandModeCommand command.

function ExampleEditor:OnStartChange(name)
 if name == "undoable" then
 SB.commandManager:execute(SetMultipleCommandModeCommand(true))
 end
end

function ExampleEditor:OnEndChange(name)
 if name == "undoable" then
 SB.commandManager:execute(SetMultipleCommandModeCommand(false))
 end
end

We also need to define the two commands. This is done in separate files, in the cmd folder [https://github.com/Spring-SpringBoard/SpringBoard-Core/tree/master/exts/example/cmd], which makes the Commands accessible from both unsynced (GUI) and synced (execution).
The HelloWorldCommand is rather simple, and it just prints out a single line of text.

HelloWorldCommand = Command:extends{}
HelloWorldCommand.className = "HelloWorldCommand"

function HelloWorldCommand:init(number)
 self.number = number
end

function HelloWorldCommand:execute()
 Spring.Echo("Hello world: " .. tostring(self.number))
end

The UndoableExampleCommand is slightly more complicated as it also has a value that can be changed. In the :unexecute() method we revert it to its previous value.

UndoableExampleCommand = Command:extends{}
UndoableExampleCommand.className = "UndoableExampleCommand"

local value = 0
function UndoableExampleCommand:init(number)
 self.number = number
end

function UndoableExampleCommand:execute()
 Spring.Echo("Setting value: " .. tostring(self.number))
 self.old = value
 value = self.number
end

function UndoableExampleCommand:unexecute()
 Spring.Echo("Reverting to: " .. tostring(self.old))
 value = self.old
end

Note

Displaying a synchronized value in the GUI requires additional steps. Depending on how this value is kept, things like RulesParams can be used. Refer to the Spring documentation for details: https://springrts.com/wiki/Lua_SyncedCtrl#RulesParams https://springrts.com/wiki/Lua_SyncedRead#RulesParams

 Game-specific modules

Game-specific modules

Game-specific modules can be created to customize the editor for a specific game. It can include extensions and meta-programming, as well as settings and widget/gadget overrides.

This is achieved by creating mutators [https://springrts.com/wiki/Modinfo.lua#Mutator] which depend on SpringBoard-Core and the actual game. The modinfo.lua [https://github.com/Spring-SpringBoard/SpringBoard-BA/blob/master/modinfo.lua] mutator for Balanced Annihilation is given below:

return {
 name = 'SpringBoard BA',
 shortname = 'SB_BA',
 game = 'SpringBoard BA',
 shortGame = 'SB_BA',
 description = 'SpringBoard for Balanced Annihilation',
 version = '$VERSION',
 mutator = 'Official',
 modtype = 1,
 depend = {
 -- Order matters. Putting game second ensures its widget/gadget handler is loaded

 'rapid://sbc:test',
 --'SpringBoard Core $VERSION',

 'rapid://ba:test',
 --'Balanced Annihilation $VERSION',
 },
}

It is possible to use both the rapid dependencies (such as rapid://sbc:test, rapid://ba:test) as well as for local versions (SpringBoard Core $VERSION, Balanced Annihilation $VERSION), which are more useful for development.

Note

It’s important to first include SpringBoard Core and then the game.

 Video tutorials

Video tutorials

Basic introductory tutorials:

	Introduction [https://www.youtube.com/watch?v=28g-sMu08OU]

	Scenario editing [https://www.youtube.com/watch?v=DBigX19uiYA]

	Meta-programming [https://www.youtube.com/watch?v=TmhvmxvFUuM]

 Hot keys

Hot keys

General

	Hotkey

	Action

	Ctrl-Z

	Undo

	Ctrl-Y

	Redo

	Ctrl-A

	Select All

	Ctrl-T

	Select objects of same type as current selection

	Ctrl-Shift-T

	Select objects in view, of same type as current selection

	Ctrl-X

	Cut

	Ctrl-C

	Copy

	Ctrl-V

	Paste

	Del

	Delete current selection objects

	Ctrl-S

	Save

	Ctrl-Shift-S

	Save as

	Ctrl-O

	Open

	Ctrl-I

	Import

	Ctrl-E

	Export

	1-9

	Enter into a current editor’s edit mode

	Esc

	Close dialog

	Enter

	Confirm dialog

Map editing

 Feature comparison

Feature comparison

Here we present a comparison between SpringBoard and other scenario editing software.

Spring tools

The most popular alternative for a scenario editor in the SpringRTS ecosystem is the Zero-K Mission Editor (ZKME) (link) [https://zero-k.info/Wiki/MissionEditorStartPage].
It is primarily designed for Zero-K, but it has basic support for other games with similar mechanics.

Comparing SpringBoard to ZKME:

	ZKME runs as an external tool, while SpringBoard runs in-engine. This allows SpringBoard to offer WYSIWYG kind of editing, and also use camera controls that players are already familiar with.

	ZKME doesn’t support expressions in functions and actions. This makes it hard to write complex conditions and actions, which limits expressibility.

	ZKME doesn’t support variables which makes writing logic that depends on state difficult.

	ZKME only runs on Windows, while SpringBoard supports all platforms that work with the SpringRTS engine.

	ZKME isn’t extensible, while SpringBoard has meta-programming which can be used to expose custom functionality to the GUI.

Other tools

Starcraft 2 and Warcraft 3 scenario editors are editors for the popular Starcraft 2 and Warcraft 3 games made by Blizzard entertainment.

Comparing them to SpringBoard:

	They are made for one game specifically, while SpringBoard can be used for any game using the SpringRTs engine.

	They are released under a proprietary license, and need to be paid to be used. SpringBoard is free and open source.

	They offer extensibility in terms of coding, while SpringBoard supports it with meta-programming. The SpringBoard approach allows extensions to be created by more experienced developers and they are seamlessly integrated within the editor, which makes them usable by novices.

SpringBoard, ZKME and Starcraft 2/Warcraft 3 editors all use a event/condition/action system, and that seems to be the most popular approach for defining scenarios.

 API

API

Full API can be found at API.

View

The API describing the View elements is described in the various Field pages and and the Editor class.

State

The State API consists of an Abstract State class which should be subclasses when implementing new behaviors, and the State Manager class that can be invoked to read and modify current state.

Command

The Command API is split into three parts, the base Command interface, the CompoundCommand class for grouping multiple commands into a single one and the the CommandManager class for invoking execution of commands.

Model

The model API is given by the ObjectBridge interface. More detailed s11n [https://github.com/gajop/s11n] serialization API is also included.

 Index

Index

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/minus.png

_images/10.jpg
Name: Unit enter area

- Events -
Unit enters area ®
- Gondtions -
+ Compare area (1 is scoped: area) ‘@
- Actions -
+ Destroy unit (scoped: unit) @

EETS BT T GETES GETT

_images/11.jpg
Team |

Lock team

_static/up-pressed.png

_images/1.jpg
| omems} Map Env Logic Misc Example
=
n g

WP Features Properties Collision

W H A A WA m

Type: Units ¥ Terrain; Ground v

5

N 3 il i
P - i =aastz
;

Canister ComeToP

Electrafi Fire Plate
e Ef |
‘ 5;7}5:;2&3;1\9,5,55w, Wall2 Wall3. Wall4. -‘:

_static/up.png

_images/12.jpg

_images/13.jpg

_images/14.jpg
New condition for - Unit enter area {4 New expression of type UnitTypel .

DRI D | TS TS

Compare - ; Unit type -

Compare unitType - !

first RN 3 ; unit g e
| » f
| Value. i
relation i
is v Parameter - Trigger: unit -

second

nav.xhtml

 Table of Contents

 		
 SpringBoard: Editor for Spring

 		
 Installing

 		
 Using packaged builds

 		
 Manual setup

 		
 Hardware requirements

 		
 Software requirements

 		
 Starting out

 		
 Layout

 		
 SpringBoard directory structure

 		
 Making Scenarios

 		
 Meta programming

 		
 Events

 		
 Actions

 		
 Functions

 		
 Data types

 		
 Higher-order functions (Advanced)

 		
 Example

 		
 Map Features

 		
 Importing

 		
 Exporting as Spring archive (recommended)

 		
 Export manually

 		
 Assets

 		
 Extensions

 		
 Example

 		
 Extensions used in games

 		
 Game-specific modules

 		
 Configuration

 		
 Editor mode handling

 		
 Examples

 		
 Video tutorials

 		
 Hot keys

 		
 Feature comparison

 		
 Spring tools

 		
 Other tools

 		
 API

 		
 View

 		
 State

 		
 Command

 		
 Model

_images/17.jpg
Name: units_killed

P number

0.00

Cancel.

_images/18.jpg
New condition for - Unit enter area

oK'
Compare
Compare number
first
Variable v
relation
<

second

units_killed -

_images/15.jpg
Name: Unit enter area

- Events -
Unit enters area ®
- Gonditions -
+ Gompare area (1 is scoped: area)
" BBTArs GntTIE R IR Es seEpsaE AR ®
- Aations -
.

Destroy unit (scoped: unit)

TS ETTTE T TS @

_images/16.jpg
Objects ~ Map Env Logic 1 Misc Example ©
3 o

Area Triggers [ATABIEE] Runtime

(AR TS T A]

Add variable (1)

_images/20.jpg
Name:

Unit enter area 5
i

- Conditions -
i Compare area (1 is scoped: area) ()
+ Compare unitType (11 is Unit type (scoped: unit)) ®
5 Compare number (units_killed < 1) [©)
- Actions -
+ Destroy unit (scoped: unit) ()
+ Assign Number (units_killed, Add (1, units_killed)) ®
+Event

) [+Condtion | [+hetion) [ok |

_images/3.jpg
Objects ~ Map. Env Logic 1 Misc Example
T 0 %

/17| Triggers Variables Runtime

(AR TSN N A]

Add area (1)

_images/19.jpg
New action for - Unit enter area New expression of type number
Variable - Math -
.

Assign Number v

variable numberl

units_killed - Variable v units_killed -

Value -

£
£l
g
T A A L Y MR T
2
El
g
R

_images/2.jpg

_images/4.jpg
=4

= |

= |

_images/5.jpg
Objects ~ Map Env [Lug\c Misc Example
)
&) Gy

Area WIS Variables Runtime

(AR T - N A]

_images/6.jpg
|

Name: Unit enter area

- Events -

- Gonditions -
- Actions -

() (oo) (oA) (0) (G

_images/9.jpg
New action for - New trigger

oK Cancel
Unit -
Destroy unit -

unit

Parameter Trigger: unit

_images/features1.jpg
springboard/projects/new-project.sdd -5 @

Project: springboard/projects/new-project.sdd

ES (oo | wer | e | e
Exit B Lockisam
T 1. Download SF from https://github.com/Spring-Helper-Projects/spring-features/archive/master.zip extract it and open * T 'ﬂ- €0
ittt the folder. Units Features Properties Gollision
Data dir = 5
e . p— p— B ww s & s WL HE
features modinfo. objects3d unittexture
la s

2. Open project

3. Copy features, objects3d and
unittexture folder
to your project.

'You might want to remove the
features you don't need later.

springboard proects newprojectsdd Q -z - o @
. — —
-4 o4
mapinfo. sb_project_ triggers
lua files.

X: 2024, Y: 49 Z: 1526, No selection
Memory Video memory: 1918/6144 MB D) (| ||
SpringBoard Core-$VERSION (1.1305.0)

_images/7.jpg
New event for - New trigger

oK Cancel

Unit enters area -

Params: untt, area

_images/8.jpg
New condiion for - New trigger

Compare -
Compare area -
first
Value - 19
relation Sy e
is -
second

Parameter v Trigger: area -

_images/overview.jpg
X:3377, Z: 4135, No selection

Memory 112 MB

_images/tab_env.jpg
Objects Map Env Logc Misc Example

Lighting ~ Sky Water

_images/features2.jpg
springboard/projects/new-project.sdd
Project: springboard/projects/new-project.sdd Spectator - [omems 1 Map Env Misc

Exit B Lock team

Upload Log X ’P .ﬁ'

Units Features Properties Collision

Data dir 5
A E W E & & W E

Open project

4. Press F8 for console window to show

[GameiCis/tResdNatLOGM SG] sendar="-UnnamedPlayer" siring="[Game! Load][la{Rules, Gaia)~(0x712cc870,(ni)
Spectator ~UnnamedPlayer finished loading and is now ingame
SpringApp MainEventtanler[SDL_WINDOWEVENT_HIDDEN][1] fuSersen=0

[
~ScopedOnceTimer][Sound: Iconifisd]
pringaor J/SDL WINDOWEVENT HIDDEN](2]
pring J[SDL_WINDOWEVENT_HIDDEN](1] ulScreen=0
~Scoped0nceT\mev][Soun" Iconfied] 01
pring J/SDL WINDOWEVENT HIDDEN](2]
SpringApp:MainEventHandier][SDL-WINDOWEVENT=SHOWNI] fulScreen=0
~ScopedOnceTimer][Sound: Iconifisd] Oms
pringApp: JISDL_WINDOWEVENT_SHOWNJ2]
pringApp JISBL_WINDOWEVENT_SHOWN fuSereen=0
~Scoped0nceT\mev][Soun" Iconfied] O
pring fEDL WINDOWEVENT_SHOWN2
pring JISBL_WINDOWEVENT_SHOWN fulSereen-0
~Scoped0nceT\mev][Soun" Iconfied] 0
pring J/SBL WINDOWEVENT SHOWNI(2
pring JISDL_WINDOWEVENT_SHOWNI(] ulScreen=0
~ScopedOneeTmer[Sound:lcontid] Om
pringApp: J[SDL WINDOWEVENT SHOWNJ(2]
pened in editor project.sdd ®
Clear Problems(0) This sessior LuaUl Reload LuaRules Reload Cheating POPUPCHENOIN Hide/Show (F8)

X: 2430, Y: 49 Z: 1785, No selection
Memory Video memory: 1908/6144 MB 9| € |®
SpringBoard Gors-§VERSION (1.1305.0)

_images/features3.jpg
springboard/projects/new-project.sdd
Project: springboard/projects/new-project.sdd Spectator -
Exit - ook tearm
Upload Log
Data dir

Open project

6. You should now be able to use
features in your project

2 Version: 104,0,1:1553-6d30012 amspane Linux 64:bt (native)
[Game:Cl { added new player ~Us h number 2 to team 0

Connecﬂon sstabiched (givenc)

e :ClientReadNef][LOGMSG] se medPlayer” string="[PreGame: GameDataReceived][map-checksums]
sevvev::2!5635!b55633252b715b3776b6e0edd°3ﬁb1c9!dde!720456eab5924194de°75d5d60506"24e3e136e42214732673060556d9a72c70167955°!d333!6aab1
clien 194207886 05c6(124e3e 136422 14732673060586d9a7207016795891d333f6aaba’

Sam ChemReadNet][LOGMS[‘] sende UnnamedP\ayev string="[PreGame(GaeDataRecsivad|mod:checksums]
faf02a47e8463652f1
Saiodstsr o atiad7enaeseson oerad 3
Gheating is enabled!
heating is disabled!
Sync feature
Sync:
Sync: area
{forcouldfnotload Etall=30M (f=ason [S3ORarsercotidinoiliindimodelfilsiobjecisad metal

=30)
e, Gl o (fencom [SHer v oans mel i) medhilo eRremeameyehinding, e o)
alTea

{01 colldinotoadjmods]
SpringBoard] Set global LO:
Game: ChemReadNet][LOCMSG] medPlayer’ string=
pectaior ~UnnamedPlayer finjshed \oadmg SRR €

[Game:CleniReadNe(LOGH medPlayer’ string="could not load model "metal 530" (reason: [S30Parser] could not find model-fle objects3d/metal.s30)"
[Game: ChemReadNet][LOGMSG] sendar—-UnnamedPlayer" string="couid not load modsl euiralhivianding. dlead.so" (1sason: [S30Parsei] could not ind modi-lis objects3dinsutralnivlanding. dead!s30)"

e

[Game::Load][lua{Rules, Gaia}~{0x71a 14510, (i)}

Restart Hide