
SpringBoard Documentation
Release 0.5

gajop

Aug 19, 2022

Contents

1 Installing 3

2 Game-specific modules 5

3 Assets 7

4 Help 9

5 Contents 11
5.1 Installing . 11

5.1.1 Using packaged builds . 11
5.1.2 Manual setup . 11
5.1.3 Hardware requirements . 12
5.1.4 Software requirements . 12

5.2 Starting out . 12
5.2.1 Layout . 12

5.3 SpringBoard directory structure . 16
5.4 Making Scenarios . 16
5.5 Meta programming . 28

5.5.1 Events . 29
5.5.2 Actions . 29
5.5.3 Functions . 30
5.5.4 Data types . 30
5.5.5 Higher-order functions (Advanced) . 31
5.5.6 Example . 32

5.6 Map Features . 33
5.6.1 Importing . 33
5.6.2 Exporting as Spring archive (recommended) . 35
5.6.3 Export manually . 35

5.7 Assets . 35
5.8 Extensions . 36

5.8.1 Example . 36
5.8.2 Extensions used in games . 38

5.9 Game-specific modules . 39
5.9.1 Configuration . 39
5.9.2 Editor mode handling . 40
5.9.3 Examples . 40

i

5.10 Video tutorials . 40
5.11 Hot keys . 40
5.12 Feature comparison . 41

5.12.1 Spring tools . 41
5.12.2 Other tools . 41

5.13 API . 42
5.13.1 View . 42
5.13.2 State . 42
5.13.3 Command . 42
5.13.4 Model . 42

ii

SpringBoard Documentation, Release 0.5

SpringBoard is an in-game editor for the SpringRTS engine, and it can be used to develop maps and scenarios.

Contents 1

https://springrts.com/

SpringBoard Documentation, Release 0.5

2 Contents

CHAPTER 1

Installing

The simplest way to download SpringBoard is by using one of the provided installers:

• Windows build

• Linux build

For details refer to Installing.

3

https://github.com/Spring-SpringBoard/SpringBoard-Core/releases/download/v1.1335.0/SpringBoard-1.1335.0.exe
https://github.com/Spring-SpringBoard/SpringBoard-Core/releases/download/v1.1335.0/SpringBoard-1.1335.0.AppImage

SpringBoard Documentation, Release 0.5

4 Chapter 1. Installing

CHAPTER 2

Game-specific modules

This is the core module, you may still want to get additional game-specific modules if you’re making a scenario.

Some examples:

• https://github.com/Spring-SpringBoard/SpringBoard-BA

• https://github.com/Spring-SpringBoard/SpringBoard-ZK

• https://github.com/Spring-SpringBoard/SpringBoard-EVO

• https://github.com/Spring-SpringBoard/SpringBoard-S44

5

https://github.com/Spring-SpringBoard/SpringBoard-BA
https://github.com/Spring-SpringBoard/SpringBoard-ZK
https://github.com/Spring-SpringBoard/SpringBoard-EVO
https://github.com/Spring-SpringBoard/SpringBoard-S44

SpringBoard Documentation, Release 0.5

6 Chapter 2. Game-specific modules

CHAPTER 3

Assets

A set of core assets are available. You can download them either via the launcher’s Asset Download option (rec-
ommended), or manually via a direct link. In case of a manual download, you need to extract them to springboard/
assets/core/.

7

https://content.spring-launcher.com/core_v1.zip

SpringBoard Documentation, Release 0.5

8 Chapter 3. Assets

CHAPTER 4

Help

Please post any questions, bugs and feature requests as Github issues.

For realtime troubleshooting feel free to join us on Discord in the #springboard channel.

9

https://github.com/Spring-SpringBoard/SpringBoard-Core/issues/new
https://discordapp.com/invite/c8hmDnr

SpringBoard Documentation, Release 0.5

10 Chapter 4. Help

CHAPTER 5

Contents

5.1 Installing

5.1.1 Using packaged builds

The simplest way to download SpringBoard is by using one of the provided installers. They will automatically down-
load all of the needed resources (engine, editor archives, maps) and setup files, and launch SpringBoard. They will
also check for updates on launch and keep the editor updated.

Packages:

• Windows build

• Linux build

Once you have downloaded one of the above files, simply run them and install as necessary. After installation, it will
download the necessary files and launch SpringBoard itself.

Note: Linux users need to make the downloaded .AppImage file executable, by doing chmod +x SpringBoard.
AppImage

5.1.2 Manual setup

It is also possible to manually setup SpringBoard. Please refer to the SpringRTS documentation for downloading and
installing the engine and using pr-downloader.

The production version can be obtained from rapid, via: pr-downloader sbc:test

The development version can be obtained from this repository, by cloning it in your game folder: git clone
https://github.com/Spring-SpringBoard/SpringBoard-Core SB-C.sdd

11

https://github.com/Spring-SpringBoard/SpringBoard-Core/releases/download/v1.1335.0/SpringBoard-1.1335.0.exe
https://github.com/Spring-SpringBoard/SpringBoard-Core/releases/download/v1.1335.0/SpringBoard-1.1335.0.AppImage
https://springrts.com/wiki/Download
https://springrts.com/wiki/Pr-downloader

SpringBoard Documentation, Release 0.5

Note: Games can distribute their packages differently. Some games might include the editor as part of the ingame
lobby. For more information, consult the game manual.

5.1.3 Hardware requirements

SpringBoard runs on most machines that support the SpringRTS engine, with the requirements described here. The
only additional requirement is that the Graphics Card drivers must support basic OpenGL Shaders (GLSL). Most
modern GPUs should be usable, but it is necessary to ensure the system has newest OpenGL drivers (see this for
download instructions).

Additionally, for better performance having a good GPU will make terrain texture editing more efficient, while having
a decent CPU and more RAM will make heightmap editing and scenario editing work more smoothly.

5.1.4 Software requirements

Linux has additional software requirements:

• SDL (Ubuntu package: libsdl2-2.0-0)

• OpenAL (Ubuntu package: libopenal1)

5.2 Starting out

This section introduces the layout of SpringBoard. First make sure you have properly installed SpringBoard. If
you are using officially distributed packages, simply run the executable to start SpringBoard. In case you’re using a
game-specific version of SpringBoard, refer to its manual on how to run it.

Note: SpringBoard might show a black screen on the first run until it loads. This is expected behavior, during which
the program is caching files, and the program isn’t hanging.

Note: Avoid running it in Multiplayer mode (even if it’s just a host bot), as SpringBoard might cause extensive
network usage, and not work properly.

5.2.1 Layout

Once you start the SpringBoard you should see something similar to Overview.

The main editor elements are in the top right part of the UI, separated into tabs. Each of the large buttons with icons
represents a specific Editor control.

At the bottom of the screen is the status display, which shows various information about the current state of the Editor,
such as memory usage, mouse position, currently selected objects and the undo-redo stack.

At the top left is the project name, and just next to the tabs is the team changer control. In the top middle of the screen
is the Start/Stop button which is used to start/stop testing the project.

Zooming in Objects tab, we look at the tab elements in more detail.

12 Chapter 5. Contents

https://springrts.com/wiki/About#System_requirements
https://www.khronos.org/opengl/wiki/Getting_Started#Downloading_OpenGL

SpringBoard Documentation, Release 0.5

Fig. 1: Overview

Fig. 2: Objects tab

5.2. Starting out 13

SpringBoard Documentation, Release 0.5

The editor is split into 5 main categories (with an extra one for the example tab). It is possible to navigate between
these tabs by either clicking on them or by pressing Shift+Tab to go forward and Shift+Control+Tab to go backwards.
For additinoal hotkeys refer to Hot keys.

The smaller buttons are shared between all tabs and represent common actions actions such as Reload meta model,
Copy, Cut, Paste, Save project, Save project as, Load project, Export to, Import from are accessible from all tabs.
Reload meta model is unique to SpringBoard, and will be described in the Meta programming section. Additional
common buttons (Undo, Redo, Clear undo-redo Stack) are available in the bottom middle of the screen, in the status
window.

The tab opened by default is the Objects tab. The first two buttons (Units and Features), are editors for adding and
removing unit and feature objects in the game world, with the Set and Brush editing modes. The Properties editor
allows editing properties of any selected object group, while Collision provides support for editing collision mechanics
related properties.

Fig. 3: Map tab

The Map tab offers components for editing various Spring maps. Heightmap can be edited with the Terrain, via the
Add, Set, and Smooth tools. Diffuse, Specular and DNTS maps can be edited using the Texture tools, which also
support applying arbitrary filters like blur and sharpen as well as a Void editing tool which can be used to make certain
map parts invisible.

The Metal and Grass elements provide support for editing the metal and grass maps respectively. Games that instead
use metal spots (or any point-based resource system) should refer to Extensions used in games.

Settings allows configuring some map rendering properties, and it also includes an experimental map compilation tool
(Linux only for now).

All map editing tools support custom Assets (both brushes and materials).

The Env tab (environment) can be used to set various rendering options. Lighting, Sky and Water can be used to set
lighting, atmosphere and water options respectively.

The Logic tab provides components to program the scenario, and can be used to add areas, triggers and variables. This
is explained in detail in the Making Scenarios section.

The Misc tab allows editing of players and alliances, as well as setting general project information.

Note: Any changes to the Players component that leads to new teams being added or old ones removed requires a
restart of the game.

Lastly, the Example tab shows how a custom extension can be seamlessly integrated into SpringBoard.

14 Chapter 5. Contents

https://springrts.com/wiki/Mapdev:Main
https://springrts.com/wiki/Mapdev:height
https://springrts.com/wiki/Mapdev:diffuse
https://springrts.com/wiki/Mapdev:specular
https://springrts.com/wiki/Mapdev:splatdetailnormals
https://springrts.com/wiki/Mapdev:metal
https://springrts.com/wiki/Mapdev:grass
https://springrts.com/wiki/Mapdev:mapinfo.lua#Lighting
https://springrts.com/wiki/Mapdev:mapinfo.lua#atmosphere
https://springrts.com/wiki/Mapdev:mapinfo.lua#water

SpringBoard Documentation, Release 0.5

Fig. 4: Env tab

Fig. 5: Logic tab

Fig. 6: Misc tab

5.2. Starting out 15

SpringBoard Documentation, Release 0.5

Fig. 7: Example tab

5.3 SpringBoard directory structure

SpringBoard directory (springboard) is mentioned throughout this documentation, and is located in the Spring
data directory.

The springboard directory contains user projects, assets and extensions:

1. Projects are maps and scenarios you are working on.

2. Assets are resources used during the project creation process.

3. Extensions are plugins that enhance the SpringBoard editor.

See also:

• Assets

• Extensions

5.4 Making Scenarios

Scenario programming consists of writing triggers - components that consist of events, conditions and actions. Each
trigger can have multiple events - any of which can invoke it. Once the trigger has been invoked, every condition will
be checked, and only if all of them are true, all actions will be executed.

We are going to create an example trigger that demonstrates basic SpringBoard GUI programming elements, based on
the Gravitas game.

To begin, we are first going to add a couple of Projector units to the map, using the Objects/Units/Add tool.

16 Chapter 5. Contents

SpringBoard Documentation, Release 0.5

5.4. Making Scenarios 17

SpringBoard Documentation, Release 0.5

Add three units like below.

Then we’re going to add an Area on the map, using the Logic/Area/Add tool.

Add an area slightly below of units as demonstrated.

18 Chapter 5. Contents

SpringBoard Documentation, Release 0.5

Now we’re going to actually start GUI programming, by creating a new trigger trigger.

5.4. Making Scenarios 19

SpringBoard Documentation, Release 0.5

Pressing the Add button should open a new trigger window, which we can rename.

We are then going to add a new event: Unit enters area. This event provides two parameters: unit and area,
which denote the objects that caused the event.

20 Chapter 5. Contents

SpringBoard Documentation, Release 0.5

We are then going to confirm if the triggered area is our newly created area, by creating a Compare area condition.

5.4. Making Scenarios 21

SpringBoard Documentation, Release 0.5

Lastly, we are going to create a Destroy unit action which will destroy the unit that has entered the area.

22 Chapter 5. Contents

SpringBoard Documentation, Release 0.5

The resulting trigger should be similar to the picture below.

We can now test our trigger. Before starting the game, we should confirm that we have selected Team 1 as our team,

5.4. Making Scenarios 23

SpringBoard Documentation, Release 0.5

otherwise we won’t be able to control the units.

To start testing, we can now press the Start button. Moving the units into the area will destroy them as expected.

After we have stopped testing, let’s now add two B.O.B units using the same Objects/Units/Add tool as before.

24 Chapter 5. Contents

SpringBoard Documentation, Release 0.5

Now, let’s say we don’t want B.O.B units to be destroyed when they enter the area. We can add another condition that
will check the unit type of the entered unit. To do this, we need to use an expression, that will return the unit type of
the entered unit.

The resulting trigger is displayed below. If we were to test the scenario again, we will see that B.O.B units aren’t being

5.4. Making Scenarios 25

SpringBoard Documentation, Release 0.5

destroyed anymore, which is the desired effect.

Lastly, let’s only destroy one unit. To do this, we can count the number of units that have been destroyed, and only
destroy the unit if we have destroyed less than 1. We are going to create a new variable units_killed which can
be used for counting destroyed units.

We’re going to define it as a number variable type and set it to 0.

26 Chapter 5. Contents

SpringBoard Documentation, Release 0.5

Back in our trigger, we’re going to create a new condition which compares the units_killed variable with 1.

We also need to increment the variable as a new action. We do this by assigning a new value to the variable, that is the
result of adding the old value to 1.

5.4. Making Scenarios 27

SpringBoard Documentation, Release 0.5

The resulting trigger is displayed below. Testing it, only the first unit will be destroyed, as desired.

5.5 Meta programming

Trigger functionalities can be extended with Meta programming. It is possible to customize the following:

• Events

• Functions

• Actions

• Data types

Meta-model file format:

28 Chapter 5. Contents

SpringBoard Documentation, Release 0.5

return {
dataTypes = ..., -- table (or Lua function that returns a table) consisting of

→˓action types
events = ..., -- table (or Lua function that returns a table) consisting of

→˓action types
actions = ..., -- table (or Lua function that returns a table) consisting of

→˓action types
functions = ..., -- table (or Lua function that returns a table) consisting of

→˓function types
}

5.5.1 Events

Events invoke triggers, and are caused by various Spring callins.

They have the following fields:

• humanName (mandatory). Human readable name for display in the UI.

• name (mandatory). Unique identifier that is used to produce readable models.

• param (optional). Additional, event data sources that are available to the entire trigger.

• tags (optional). List of human-readable tags used for grouping in the UI.

Example of event programming:

{
humanName = "Unit enters area",
name = "UNIT_ENTER_AREA",
param = { "unit", "area" },

}

5.5.2 Actions

{
humanName = "Hello world",
name = "MY_HELLO_WORLD",
execute = function()

Spring.Echo("Hello world")
end,

}

The above code block defines a simple action. The name and humanName properties of the action define the machine
(unique) and display name respectively. The execute property defines the function to be executed when the trigger is
successfully fired. When used in the editor, this action would print a Hello World on the screen.

It is common for actions to receive input that defines its behavior. One such example would be:

{
humanName = "Print unit position",
name = "PRINT_UNIT_POSITION",
input = "unit",
execute = function(input)

local x, y, z = Spring.GetUnitPosition(input.unit)
Spring.Echo("Unit position: ", x, y, z)

(continues on next page)

5.5. Meta programming 29

SpringBoard Documentation, Release 0.5

(continued from previous page)

end,
}

As one might guess, this action would take the specified unit as input and print out its position. The GUI editor will
parse the input type and the user (level designer) will be able to specify the unit when creating an instance of this
action. This is equivalent to the following Lua code:

function PRINT_UNIT_POSITION(unitID)
local x, y, z = Spring.GetUnitPosition(unitID)
Spring.Echo("Unit position: ", x, y, z)

end

5.5.3 Functions

The real power of the meta programming comes with the introduction of function types. Function types produce an
output (result of the function), which often depends on the input.

Note: There’s a difference between a Lua function and a function type in the meta model. The function type represents
a component in the meta model and is defined with a table.

Note: Function types should not have a side effect (they shouldn’t cause any changes to the game state), but they
don’t have to be pure (they don’t need to produce the same output for the same input).

Example of a function type:

{
humanName = "Unit Health",
name = "UNIT_HEALTH",
input = "unit",
output = "number"
execute = function(input)

return Spring.GetUnitHealth(input.unit)
end,

}

This function type takes a unit as input and produce a number as output. A special class of these function types are
those that return bool as output, and they represent conditions in the GUI programming.

5.5.4 Data types

Custom data types can be created as composites of builtin data types. This allows game developers to expose game-
specific concepts. These data types are defined by specifying three fields: humanName (display name), name (machine
name) and input (table of fields that it consists of). Example of a Person data type:

{
humanName = "Person",
name = "person",
input = {

{

(continues on next page)

30 Chapter 5. Contents

SpringBoard Documentation, Release 0.5

(continued from previous page)

name = "first_name",
humanName = "First name",
type = "string",

},
{

name = "last_name",
humanName = "Last name",
type = "string",

}
}

}

This custom data type can then be used in meta-programming as usual. Below we present a sample action that would
print out person’s details.

{
humanName = "Print person",
name = "PRINT_PERSON",
input = "person" ,
execute = function(input)

local person = input.person
Spring.Echo("Hello! I am " .. person.first_name .. " " .. person.last_name)

end
}

5.5.5 Higher-order functions (Advanced)

As one of the more advanced uses meta-programming also has support for higher-order functions, i.e. fuctions that
take other functions as parameters. An example of a filter higher-order function implemented in Lua is given below.
This function will filter out table elements that don’t satisfy a given function. In this case, it will filter out elements
that are lower or equal to five. As functions as first-class citizens in Lua, writing them is relatively simple.

function above5(x)
return x > 5

end

function filter(elements, f)
local retVal = {}
for _, el in pairs(elements) do

if f(el) then
table.insert(retVal, el)

end
end
return retVal

end

elements = {1, 12, 3, -5, 7}
filter(elements, above5)

In SpringBoard’s meta-programming however, higher-order functions need to have explicit types, as the meta-
programming language is statically (and explicitly) typed. The same filter function type is given below, now in
SpringBoard’s meta-programming language. The extraSources parameter defines additional scoped inputs. The func-
tion signature is defined by the output parameter. Normally the input parameter could also be specified, but that wasn’t
done in this case, as the predicate function isn’t required to use the number parameter.

5.5. Meta programming 31

SpringBoard Documentation, Release 0.5

{
humanName = "Filter elements in number array",
name = "number_array_FILTER",
input = {

"number_array",
{

name = "filter_function",
type = "function",
extraSources = {

"number",
},
output = "bool",

},
},
output = "number_array",
tags = {"Array"},
execute = function(input)

local retVal = {}
for _, element in pairs(input.number_array) do

if input.filter_function({number = element}) then
table.insert(retVal, element)

end
end
return retVal

end,
}

Additionally, it is possible to use actions as parameters to higher-order actions types, in the same way like it is done
for functions. Below we present a foreach action type that will iterate through all elements of an array and execute the
specified action for them.

{
humanName = "For each number in number array",
name = "number_array_FOR_EACH",
input = {

"number_array",
{

name = "for_each_action",
type = "action",
extraSources = {

"number",
},

},
},
tags = {"Array"},
execute = function(input)

for _, element in pairs(input.number_array) do
input.for_each_action({number = element})

end
end,

}

5.5.6 Example

An example of practical meta-programming usage can be seen in the case of Gravitas.

32 Chapter 5. Contents

https://github.com/SpringCabal/SpringBoard-Gravitas/blob/master/triggers/gravitas_triggers.lua

SpringBoard Documentation, Release 0.5

In particular we will focus on two parts of it: the GATE_OPENED event type and the LINK_PLATE_GATE action
type.

The event type is straightfoward, and signals a gate being opened. The unit parameter represents the gate being opened.

{
humanName = "Gate opened",
name = "GATE_OPENED",
param = "unit",

}

The LINK_PLATE_GATE action type takes two unit parameters, one representing a plate, and other representing a
gate. It then uses game API to link the two together, causing the gate to open if the pressure plate is activated.

{
humanName = "Link Plate To Gate",
name = "LINK_PLATE_GATE",
input = {

{
name = "plate",
type = "unit",

},
{

name = "gate",
type = "unit",

},
},
execute = function(input)

GG.Plate.SimpleLink(input.plate, input.gate)
end

}

Example scenario implemented using this custom meta-programming is available at Gravitas Example. To use it,
extract it and open it as a SpringBoard project.

5.6 Map Features

5.6.1 Importing

SpringBoard doesn’t come with any map features besides the engine-default geovent, so if you want to add them you
first need to import them into your project.

To import new features you need to perform the following steps:

1. Find existing feature sets (e.g. SpringFeatures) or make your own following the official Spring docs.

2. Copy features into your project and restart.

Below is an example of how to import SpringFeatures into a SpringBoard project.

1. Download SF from https://github.com/Spring-Helper-Projects/spring-features/archive/master.zip extract it and
open the folder.

2. Open an existing project or create a new one. Then, open its folder using the “Open Project” button.

3. Copy features, objects3d and unittexture folder to your project. You might want to remove the features you
don’t need later.

4. Press F8 for console window to show

5.6. Map Features 33

https://drive.google.com/file/d/0B9FQjbVMFgL2dmFsWmpCUVl5R0U/view?usp=sharing
https://github.com/Spring-Helper-Projects/spring-features
https://springrts.com/wiki/Gamedev:FeatureDefs
https://github.com/Spring-Helper-Projects/spring-features/archive/master.zip

SpringBoard Documentation, Release 0.5

5. Restart

6. You should now be able to use features in your project

34 Chapter 5. Contents

SpringBoard Documentation, Release 0.5

5.6.2 Exporting as Spring archive (recommended)

Exporting your project using the “Spring archive” export option will include all features and is the recom-
mended way to export a SpringBoard project.

5.6.3 Export manually

Manual export is only recommended if you want to customize the export process (perhaps you want to compile the
map yourself using a third-party tool). In that case you can follow the below tutorial.

s11n export should be used if you want to export game objects (units, features, etc.) and load them in your standalone
map. Install s11n as you would normally:

1. Copy the s11n and LCS folders to the libs/s11n and libs/LCS folders of the map (create destination
directories as necessary).

2. Copy s11n_gadget_load.lua from the s11n folder to LuaGaia/Gadgets/ of the map folder.

Then setup s11n to load your exported objects:

1. Copy your exported s11n model file to map’s mapconfig folder.

2. Copy s11n_load_map_features.lua to map’s LuaGaia/Gadgets/ folder.

3. Set the file path to your s11n model file in the newly copied s11n_load_map_features.lua

Including feature defs, compiling the map and setting mapinfo.lua is outside the scope of this guide. Please consult
the Spring MapDev pages for that.

5.7 Assets

Assets can be added to SpringBoard in order to include new art for editing. They should be added in the
springboard/assets folder, and each asset pack should have its own directory structure.

5.7. Assets 35

https://github.com/gajop/s11n
https://github.com/gajop/Lua-Class-System
https://github.com/gajop/s11n/blob/master/s11n_gadget_load.lua
https://github.com/gajop/s11n/blob/master/s11n_load_map_features.lua
https://github.com/gajop/s11n/blob/master/s11n_load_map_features.lua#L15
https://springrts.com/wiki/Mapdev:Main

SpringBoard Documentation, Release 0.5

SpringBoard supports the following asset types:

• Brush patterns /brush_patterns. These should be black images with an alpha determining the value.

• Materials /materials. Materials consist of multiple different textures (diffuse, specular and
normal), which should be contained in different image files, in the name_$texType.png format, e.g.
cement_diffuse.png and cement_specular.png.

• Skyboxes /skyboxes. These should be .dds skybox textures.

• Detail textures /detail. These are the usual Spring detail textures.

A set of core assets are available. You can download them either via the launcher’s Asset Download option (rec-
ommended), or manually via a direct link. In case of a manual download, you need to extract them to springboard/
assets/core/.

5.8 Extensions

SpringBoard support editor extensions. They should be created in separate folders, in the springboard/exts
folder, and they consist of two subfolders:

• ui. This is where you should place all strictly unsynced extensions, like the Editor GUI and States.

• cmd. This folder should contain files that should be shared by both synced and unsynced extensions, like
Command and Model.

5.8.1 Example

We present a full example of a SpringBoard extension consisting of ui and cmd modules. This example is located in
the exts/example folder of the repository.

First we will define the UI elements, given in the ui/example.lua file. At the top of the file, we will include the Editor
class and make a new ExampleEditor subclass out of it, with which we will define our custom Editor.

SB.Include(Path.Join(SB.DIRS.SRC, 'view/editor.lua'))

ExampleEditor = Editor:extends{}

We will then register the newly defined class to make it accessible in the SpringBoard interface.

ExampleEditor:Register({
name = "exampleEditor",
tab = "Example",
caption = "Example",
tooltip = "Example editor",
image = Path.Join(SB.DIRS.IMG, 'globe.png'),

})

Then in the init method, we will define the fields. We create two NumericFields: example and undoable, and we add
them to the Editor.

function ExampleEditor:init()
self:super("init")

self:AddField(NumericField({
name = "example",

(continues on next page)

36 Chapter 5. Contents

https://content.spring-launcher.com/core_v1.zip
https://github.com/Spring-SpringBoard/SpringBoard-Core/tree/master/exts/example
https://github.com/Spring-SpringBoard/SpringBoard-Core/tree/master/exts/example/ui/example.lua

SpringBoard Documentation, Release 0.5

(continued from previous page)

title = "Example:",
tooltip = "Example value tooltip.",
width = 140,
minValue = -10,
maxValue = 5,

}))

-- Note: as we are setting the value in synced only, we won't see the effect of
→˓undo in the editor.

-- Consider using game rules if you want to be able to read in the UI as well.
self:AddField(NumericField({

name = "undoable",
title = "Undoable:",
tooltip = "This value can be used with undo/redo.",
width = 140,
minValue = -3,
maxValue = 12,

}))

local children = {
ScrollPanel:New {

x = 0,
y = 0,
bottom = 30,
right = 0,
borderColor = {0,0,0,0},
horizontalScrollbar = false,
children = { self.stackPanel },

},
}

self:Finalize(children)
end

To handle field changes, we will create an OnFieldChange method, and when fields change, we will create and execute
appropriate Commands.

function ExampleEditor:OnFieldChange(name, value)
if name == "example" then

local cmd = HelloWorldCommand(value)
SB.commandManager:execute(cmd)

elseif name == "undoable" then
local cmd = UndoableExampleCommand(value)
SB.commandManager:execute(cmd)

end
end

We also want to group all changes for the UndoableExampleCommand into a single undo/redo command on the
command stack, and for that purpose we use the SetMultipleCommandModeCommand command.

function ExampleEditor:OnStartChange(name)
if name == "undoable" then

SB.commandManager:execute(SetMultipleCommandModeCommand(true))
end

end

(continues on next page)

5.8. Extensions 37

SpringBoard Documentation, Release 0.5

(continued from previous page)

function ExampleEditor:OnEndChange(name)
if name == "undoable" then

SB.commandManager:execute(SetMultipleCommandModeCommand(false))
end

end

We also need to define the two commands. This is done in separate files, in the cmd folder, which makes the Commands
accessible from both unsynced (GUI) and synced (execution). The HelloWorldCommand is rather simple, and it just
prints out a single line of text.

HelloWorldCommand = Command:extends{}
HelloWorldCommand.className = "HelloWorldCommand"

function HelloWorldCommand:init(number)
self.number = number

end

function HelloWorldCommand:execute()
Spring.Echo("Hello world: " .. tostring(self.number))

end

The UndoableExampleCommand is slightly more complicated as it also has a value that can be changed. In the
:unexecute() method we revert it to its previous value.

UndoableExampleCommand = Command:extends{}
UndoableExampleCommand.className = "UndoableExampleCommand"

local value = 0
function UndoableExampleCommand:init(number)

self.number = number
end

function UndoableExampleCommand:execute()
Spring.Echo("Setting value: " .. tostring(self.number))
self.old = value
value = self.number

end

function UndoableExampleCommand:unexecute()
Spring.Echo("Reverting to: " .. tostring(self.old))
value = self.old

end

Note: Displaying a synchronized value in the GUI requires additional steps. Depending on how this value is kept,
things like RulesParams can be used. Refer to the Spring documentation for details: https://springrts.com/wiki/Lua_
SyncedCtrl#RulesParams https://springrts.com/wiki/Lua_SyncedRead#RulesParams

5.8.2 Extensions used in games

Zero-K’s metal spot extension.

This extension describes how the ObjectBridge API can be used to create new, custom editors for game world objects.

38 Chapter 5. Contents

https://github.com/Spring-SpringBoard/SpringBoard-Core/tree/master/exts/example/cmd
https://springrts.com/wiki/Lua_SyncedCtrl#RulesParams
https://springrts.com/wiki/Lua_SyncedCtrl#RulesParams
https://springrts.com/wiki/Lua_SyncedRead#RulesParams
https://github.com/Spring-SpringBoard/SpringBoard-ZK/tree/master/springboard/exts/metal_spots
./_static/modules/model.object.object_bridge.html

SpringBoard Documentation, Release 0.5

5.9 Game-specific modules

Game-specific modules can be created to customize the editor for a specific game. It can include extensions and
meta-programming, as well as settings and widget/gadget overrides.

This is achieved by creating mutators which depend on SpringBoard-Core and the actual game. The modinfo.lua
mutator for Balanced Annihilation is given below:

return {
name = 'SpringBoard BA',
shortname = 'SB_BA',
game = 'SpringBoard BA',
shortGame = 'SB_BA',
description = 'SpringBoard for Balanced Annihilation',
version = '$VERSION',
mutator = 'Official',
modtype = 1,
depend = {
-- Order matters. Putting game second ensures its widget/gadget handler is loaded

'rapid://sbc:test',
--'SpringBoard Core $VERSION',

'rapid://ba:test',
--'Balanced Annihilation $VERSION',

},
}

It is possible to use both the rapid dependencies (such as rapid://sbc:test, rapid://ba:test) as well
as for local versions (SpringBoard Core $VERSION, Balanced Annihilation $VERSION), which are
more useful for development.

Note: It’s important to first include SpringBoard Core and then the game.

5.9.1 Configuration

General configuration is given in the sb_settings.lua file. It allows to configure the following behavior:

• startStop: Position of the startStop button.

• OnStartEditingSynced: Function to be executed in synced when editing starts.

• OnStopEditingSynced: Function to be executed in synced when editing stops.

• OnStartEditingUnsynced: Function to be executed in unsynced when editing starts. This is commonly
used to disable widgets that would get in the way of editing.

• OnStopEditingUnsynced: Function to be executed in unsynced when editing stops. This is commonly
used to reenable widgets that were disabled for editing.

Balanced Annihilation version of the file is given in sb_settings.lua

5.9. Game-specific modules 39

https://springrts.com/wiki/Modinfo.lua#Mutator
https://github.com/Spring-SpringBoard/SpringBoard-BA/blob/master/modinfo.lua
https://github.com/Spring-SpringBoard/SpringBoard-BA/blob/master/sb_settings.lua

SpringBoard Documentation, Release 0.5

5.9.2 Editor mode handling

Sometimes it’s necessary to have the game’s widget or gadget act differently depending on whether it’s currently
being edited or not. It is possible to read the current state from the GameRules’ sb_gameMode parameter, like:
Spring.GetGameRulesParam("sb_gameMode"). It can return three values:

• "dev": SpringBoard is currently in edit mode and game mechanics (especially those depending on time)
shouldn’t be happening.

• "test": SpringBoard is currently being tested and game mechanics should work as normally. Additionally
debug information can be printed out and it should be possible to return to the Editor (e.g. by clicking on the
Stop button).

• "play": SpringBoard’s is currently being played, like a normal scenario. All game mechanics should work as
usual, with no debug/development information printed. It is not possible to return back to the Editor.

Example of how this can be handled is given for a SpringBoard EVO gadget.

5.9.3 Examples

Repositories:

• https://github.com/Spring-SpringBoard/SpringBoard-BA

• https://github.com/Spring-SpringBoard/SpringBoard-ZK

• https://github.com/Spring-SpringBoard/SpringBoard-EVO

• https://github.com/Spring-SpringBoard/SpringBoard-S44

5.10 Video tutorials

Basic introductory tutorials:

• Introduction

• Scenario editing

• Meta-programming

5.11 Hot keys

General

40 Chapter 5. Contents

https://github.com/Spring-SpringBoard/SpringBoard-EVO/blob/master/LuaRules/gadgets/game_controlVictory.lua#L1439-L1442
https://github.com/Spring-SpringBoard/SpringBoard-BA
https://github.com/Spring-SpringBoard/SpringBoard-ZK
https://github.com/Spring-SpringBoard/SpringBoard-EVO
https://github.com/Spring-SpringBoard/SpringBoard-S44
https://www.youtube.com/watch?v=28g-sMu08OU
https://www.youtube.com/watch?v=DBigX19uiYA
https://www.youtube.com/watch?v=TmhvmxvFUuM

SpringBoard Documentation, Release 0.5

Hotkey Action
Ctrl-Z Undo
Ctrl-Y Redo
Ctrl-A Select All
Ctrl-T Select objects of same type as current selection
Ctrl-Shift-T Select objects in view, of same type as current selection
Ctrl-X Cut
Ctrl-C Copy
Ctrl-V Paste
Del Delete current selection objects
Ctrl-S Save
Ctrl-Shift-S Save as
Ctrl-O Open
Ctrl-I Import
Ctrl-E Export
1-9 Enter into a current editor’s edit mode
Esc Close dialog
Enter Confirm dialog

Map editing

5.12 Feature comparison

Here we present a comparison between SpringBoard and other scenario editing software.

5.12.1 Spring tools

The most popular alternative for a scenario editor in the SpringRTS ecosystem is the Zero-K Mission Editor (ZKME)
(link). It is primarily designed for Zero-K, but it has basic support for other games with similar mechanics.

Comparing SpringBoard to ZKME:

• ZKME runs as an external tool, while SpringBoard runs in-engine. This allows SpringBoard to offer WYSI-
WYG kind of editing, and also use camera controls that players are already familiar with.

• ZKME doesn’t support expressions in functions and actions. This makes it hard to write complex conditions
and actions, which limits expressibility.

• ZKME doesn’t support variables which makes writing logic that depends on state difficult.

• ZKME only runs on Windows, while SpringBoard supports all platforms that work with the SpringRTS engine.

• ZKME isn’t extensible, while SpringBoard has meta-programming which can be used to expose custom func-
tionality to the GUI.

5.12.2 Other tools

Starcraft 2 and Warcraft 3 scenario editors are editors for the popular Starcraft 2 and Warcraft 3 games made by
Blizzard entertainment.

Comparing them to SpringBoard:

5.12. Feature comparison 41

https://zero-k.info/Wiki/MissionEditorStartPage

SpringBoard Documentation, Release 0.5

• They are made for one game specifically, while SpringBoard can be used for any game using the SpringRTs
engine.

• They are released under a proprietary license, and need to be paid to be used. SpringBoard is free and open
source.

• They offer extensibility in terms of coding, while SpringBoard supports it with meta-programming. The Spring-
Board approach allows extensions to be created by more experienced developers and they are seamlessly inte-
grated within the editor, which makes them usable by novices.

SpringBoard, ZKME and Starcraft 2/Warcraft 3 editors all use a event/condition/action system, and that seems to be
the most popular approach for defining scenarios.

5.13 API

Full API can be found at API.

5.13.1 View

The API describing the View elements is described in the various Field pages and and the Editor class.

5.13.2 State

The State API consists of an Abstract State class which should be subclasses when implementing new behaviors, and
the State Manager class that can be invoked to read and modify current state.

5.13.3 Command

The Command API is split into three parts, the base Command interface, the CompoundCommand class for grouping
multiple commands into a single one and the the CommandManager class for invoking execution of commands.

5.13.4 Model

The model API is given by the ObjectBridge interface. More detailed s11n serialization API is also included.

42 Chapter 5. Contents

./_static/index.html
./_static/modules/view.fields.field.html
./_static/modules/view.editor.html
./_static/modules/state.abstract_state.html
./_static/modules/state.state_manager.html
./_static/modules/command.command.html
./_static/modules/command.compound_command.html
./_static/modules/command.command_manager.html
./_static/modules/model.object.object_bridge.html
https://github.com/gajop/s11n

	Installing
	Game-specific modules
	Assets
	Help
	Contents
	Installing
	Using packaged builds
	Manual setup
	Hardware requirements
	Software requirements

	Starting out
	Layout

	SpringBoard directory structure
	Making Scenarios
	Meta programming
	Events
	Actions
	Functions
	Data types
	Higher-order functions (Advanced)
	Example

	Map Features
	Importing
	Exporting as Spring archive (recommended)
	Export manually

	Assets
	Extensions
	Example
	Extensions used in games

	Game-specific modules
	Configuration
	Editor mode handling
	Examples

	Video tutorials
	Hot keys
	Feature comparison
	Spring tools
	Other tools

	API
	View
	State
	Command
	Model

